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Dissipative solitons and vortices in polariton Bose-Einstein condensates
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We examine spatial localization and dynamical stability of Bose-Einstein condensates of exciton polaritons
in microcavities under the condition of off-resonant spatially inhomogeneous optical pumping both with and
without a harmonic trapping potential. We employ the open-dissipative Gross-Pitaevskii model for describing
an incoherently pumped polariton condensate coupled to an exciton reservoir, and reveal that spatial localization
of the steady-state condensate occurs due to the effective self-trapping created by the polariton flows supported
by the spatially inhomogeneous pump, regardless of the presence of the external potential. A ground state of the
polariton condensate with repulsive interactions between the quasiparticles represents a dynamically stable bright
dissipative soliton. We also investigate the conditions for sustaining spatially localized structures with nonzero
angular momentum in the form of single-charge vortices.
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I. INTRODUCTION

Since the first observation of spontaneous exciton-polariton
condensation in a microcavity [1], significant effort in this
vigorous field has been directed towards understanding the
properties of superfluid flow in the novel nonequilibrium
polariton superfluid [2–5]. Recently, considerable attention
was drawn to the controlled creation of spatially localized
collective excitations of the exciton-polariton Bose-Einstein
condensate (BEC). Most notably, moving bright solitons have
been predicted [6] and observed in a pioneering proof-of-
principle experiment [8]. The properties of polariton solitons,
superior to those of optical solitons in semiconductor cavity
lasers, namely, the picosecond response times and large
nonlinearities, suggest that polariton BEC can offer novel
functionalities for information-processing devices [7]. The
bright solitons observed in [8] require a resonant excitation
regime at nonzero in-plane momentum to make use of the
dispersion properties of the lower-polariton branch that allow
the polaritons to have a negative effective mass. In this regime,
strong repulsive interactions between the quasiparticles can be
balanced by the effective dispersion to achieve localization.
A similar mechanism for spatial localization via effective
mass management is well explored for atomic BECs in
optically induced band-gap structures [9]. In the absence
of the spectral gap, however, localization by means of
effective mass management is only possible in one spatial
dimension. The question whether localization of polariton
BEC with repulsive interactions can occur in the regime
of spontaneous condensation at zero in-plane momentum
(positive effective mass) and nonresonant excitation, remains
open.

In this paper we examine, both analytically and numerically,
formation and dynamical stability of a steady-state BEC
of exciton polaritons in microcavities in the presence of a
spatially localized (Gaussian) optical pump. By employing
the open-dissipative Gross-Pitaevskii model [10] describing
an incoherently pumped BEC coupled to the exciton reservoir
and successfully used in theoretical description of a number
of significant experiments (see, e.g., [2,4]), we analyze the

mechanisms for creating and sustaining two-dimensional
spatially localized structures, such as dissipative solitons and
vortices. In addition to the trap-free case, we analyze the
structure of the localized states with the addition of a harmonic
external potential that can be created, e.g., by engineered stress
of the microcavity [11]. In the latter case, the localization
of the repulsive polariton BEC is due to both the harmonic
confinement and the inhomogeneous pump, in contrast to the
case of a trapped atomic BEC with a positive scattering length
in thermal equilibrium.

We show, analytically and numerically, that, even in the
absence of external potentials localization of the steady-
state polariton BEC occurs due to the effective self-trapping
created by the polariton flows due to spatially inhomogeneous
off-resonant optical pumping. Spatial localization of the
condensate occurs due to the internal balance of superfluid
density flows which is identical to that responsible for
supporting dissipative “antisolitons” in optical systems. Such
localization of continuously self-defocusing solitons occurs
despite the repulsive interactions between the quasiparticles,
and is analogous to optical gain-guiding effect [12,13] in
its reliance on continuous pumping. Thus a ground state
of the polariton BEC represents a dissipative soliton which
is spatially localized and dynamically stable, regardless of
the presence of the external potential. A harmonic trapping
potential dramatically modifies the structure of the steady state
due to the competition with the spatially inhomogeneous pump
(see Fig. 1).

A single vortex created in a localized steady-state BEC
by phase imprinting is similarly supported by the continuous
inhomogeneous pump as a spatially localized dissipative
vortex soliton. Akin to a vortex line in a trapped atomic BEC
with a positive scattering length, it is dynamically unstable
[14]. In the absence of potential, a vortex line spirals out of
the polariton condensate and the condensate restores to its
ground steady state. We show that the addition of fabricated
(i.e., nonrotating) harmonic potential modifies the threshold of
the optical pumping required to sustain a steady state with an
angular momentum and leads to the possibility of a long-term
survival of the vortex.
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FIG. 1. (Color online) Typical steady-state density of a harmon-
ically trapped polariton condensate in the regime of (a) narrow and
(b) wide pump (see text).

II. MODEL

We consider a spontaneously formed exciton-polariton
BEC (k|| = 0, lower-polariton branch) under the continuous-
wave nonresonant excitation. The model first suggested in [10]
consists of a mean-field equation for the polariton condensate
wave function and a rate equation for the inhomogeneous
density of the exciton reservoir. We write it here in the form
used in [4]:

ih̄
∂�

∂t
=

[
− h̄2

2m
∇2

⊥ + V (�r,t) + i
h̄

2
(RnR − γc)

]
�,

(1)
∂nR

∂t
= −(γR + R|�|2)nR(�r,t) + P (�r),

where V (�r,t) = U (�r) + gc|�|2 + gRnR(�r,t). Here � is the
condensate wave function, nR is the exciton reservoir density,
P (�r) is the inhomogeneous optical pump, and U (�r) is the exter-
nal potential. The critical parameters defining the condensate
dynamics are the loss rates of the polaritons γc and reservoir
excitons γR , the stimulated scattering rate R, condensate
coupling to the reservoir gR , and the coefficient gc quantifying
the nonlinear interaction of polaritons. In what follows, we
will consider a radially symmetric external trapping potential
U (r) = U 2

0 r2, where U0 = 0 in a trap-free case.
The model can be rewritten in dimensionless form by using

the following characteristic scaling units of time, energy, and
length:

T = 1/γc, E = h̄γc, L =
√

h̄

mLP γc

, (2)

where mLP is the lower-polariton effective mass. Here, we
choose the parameters close to those of the experimental setup
of [4], with mLP = 10−4me, gc = 6 × 10−3 meV μm2, gR =
2gc, γc = 0.33 ps−1, γr = 1.5γc, and R = 0.01 μm2 ps−1. In
what follows we use and plot the dimensionless (normalized)
variables and parameters.

We recall that, in the spatially homogeneous case, one can
estimate the threshold pumping power at which the condensate
appears in the system, as described in [10]. This threshold
is approximately determined by the values of parameters for
which stimulated gain equals loss:

Pth ≈ γRγc

R
. (3)

The ratio of the polariton nc to exciton reservoir nR densities
in the steady homogeneous state can then be defined as

nc

nR

= γc

γR

(P̄ − 1), (4)

where normalized pump is defined as P̄ = P/Pth � 1. In
general, even in a spatially inhomogeneous case, the typical
dynamical behavior of the model equations (1) displays rapid
transition to the steady state of the polariton BEC for P̄ > 1.

Below we consider the properties of the steady state
supported by an inhomogeneous (Gaussian) optical pump,
P (r) = P0 exp(−r2/σ 2), with or without an additional trap-
ping potential. The spot size of the optical pump is considered
to be small compared to the size of the sample, so that the local
density approximation [15] is not applicable.

III. STEADY STATE OF THE CONDENSATE

A. Theory

For a general continuous-wave pump, the condensate wave
function in the steady state can be looked for in the following
general form: � = ψ(x,y) exp(−iμt), where μ is the energy
(chemical potential) of the steady state. If both the external
potential and the pump are radially symmetric, we can rewrite
the model system in polar coordinates (x,y) → (r,θ ) and
reduce the problem to finding radially symmetric steady
states ψ(x,y) = ψ(r) exp(imθ ), where m is the phase winding
number [16] (topological charge of a vortex), and the ground
state corresponds to m = 0.

The steady-state wave function ψ(r) obeys the following
stationary equation:

∇2
r ψ − 2V (r)ψ − i

(
Rn0

R − γc

)
ψ + 2μψ = 0, (5)

where ∇2
r = ∂2/∂r2 + (1/r)∂/∂r − m2/r2, V (r) = gc|ψ |2 +

gRn0
R + U (r), and the steady-state reservoir density is found

from Eqs. (1) as

n0
R = P (r)

γR + R|ψ |2 . (6)

All physical parameters in Eq. (5) are dimensionless, and under
the adopted scaling (2), γc = 1. However, we formally retain
this parameter in subsequent formulas.

The stationary wave function can be further separated
into the real amplitude and phase: ψ(r) = �(r) exp[iφ(r)].
Following the analysis suggested in [17] for the generalized
complex Ginzburg-Landau equation, we can obtain asymptotic
behavior of amplitude and phase of the condensate wave
function. In the absence of a trapping potential, U (r) = 0, the
requirement of spatial localization, P (r) → 0, |ψ(r)| → 0,
imposed on both the pump and the condensate wave function
at large r leads to the following asymptotic behavior of the
amplitude and the phase at r → ∞:

�(r) ∼ A exp(−p−r), φ(r) ∼ B + p+r, (7)

where p± = [(μ2 + γ 2
c /4)1/2 ± μ]1/2, and A,B are real con-

stants. This asymptotic behavior shows that the condensate
decays slower than the pump field, and therefore the spatial
profile of the condensate will significantly differ from that of
the pump.
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Conversely, at r → 0, the asymptotic behavior is found to
be

�(r) ∼ Cr |m| exp(−q−r2), φ(r) ∼ q+r2, (8)

where q− = (1/2)(1 + |m|)−1[V (0) − μ] and q+ = (1/4)(1 +
|m|)−1[Rn0

R(0) − γc], and for the ground state C = �(0) ≡
�0. For V (0) < μ, the second derivative of the amplitude
changes sign at r = 0, i.e., the condensate displays a central
“dip” in its density profile and acquires a ring shape, as seen
in Fig. 1(a).

The presence of the harmonic trap U (r) = U 2
0 r2 dramati-

cally modifies the asymptotic behavior of the condensate wave
function for r → ∞ [18], so that

�(r) ∼ A exp
[−U 2

0 r2 + (μ − 1/2)ln(2U0r)
]
,

(9)
φ(r) ∼ B + γcln(2U0r).

The asymptotic behavior of a trapped polariton BEC at r → 0
is described by Eq. (8).

For a spatially localized (e.g., Gaussian) pump, P (r),
the spatial localization of the condensate in the absence of
an added trapping potential is counterintuitive. Indeed, the
effective potential V (r) formed by the repulsive nonlinearity
(due to polariton scattering) and interaction with the exciton
reservoir is antitrapping. Therefore the balance of nonlinearity
and dispersion responsible for nonlinear localization in con-
servative condensate systems cannot be achieved. Physically,
the existence of the spatially localized steady state of the
polariton condensate can be understood by examining the
internal flows of the dissipative polariton superfluid, analogous
to the Pointing vector flows in dissipative optical systems
[17,19]. Indeed, by defining the superfluid current density
(flux) in the standard way �j = Im(�∗∇�), we can recast
Eq. (5) in the form of coupled equations for the amplitude
of the condensate wave function � and radial component of
the stationary flux J = jr = ncvr , where nc = �2(r) is the
condensate density, and vr is the radial component of the flow
velocity �v = (dφ/dr)�er + (m/r)�eθ . The equations for these
variables take the following form:

1

r

d

dr
(rJ ) − (

Rn0
R − γc

)
�2 = 0,

(10)
∇2

r � − 2[V (r) − μ]� − VJ � = 0,

where VJ = J 2�−4 = (dφ/dr)2. The first equation of the
system is the continuity equation for the stationary flow with
source and sink. The first term in this equation is simply the
divergence of the flux, D = ∇ · �j , which serves as a local
measure of gain (D > 0) or loss (D < 0). A steady state
exists if generation of the polariton superfluid via continuous
pumping is balanced by its dissipation. This condition can be
formulated in terms of the flux as follows [19]:∫ ∞

0
D(r)r dr = 0. (11)

Remarkably, this condition can be satisfied regardless of the
sign of the nonlinear interactions in the systems, i.e., for
both repulsive (as in the case of polaritons) and attractive
nonlinearities. The nonlinearity affects the energy (chemical
potential) of the steady state and its spatial extent according to
Eqs. (7) and (9). We note that nonlinear eigenstates for a very

similar dynamical one-dimensional system with linear loss
and spatially localized gain and without additional external
potential were found in [13]. The key feature of our system is
similar: for the given parameters of gain and loss, the chemical
potential, μ, is unique.

The second equation in (10) highlights the composition
of the effective potential supporting the condensate wave
function as its eigenstate with the corresponding eigenvalue
μ. It is clear that the radial flux that exists due to the spatially
inhomogeneous phase of the condensate φ(r) �= const, forms
an attractive potential that can trap a spatially localized bound
state even in the absence of the external trapping U0 = 0.
In the linear limit (i.e., for very small condensates and/or
nonlinearity) this effective trapping potential due to the flux is
approximately given by

VJ (r) ≈ γ 2
c

4
(P̄0 − 1)2r2. (12)

The effect of existence of the localized linear modes supported
purely by the localized gain is known as “gain guiding” in
optics [12].

B. Numerical results

The existence of the localized steady state of the dissipative
polariton BEC with the properties described in the previous
section can be demonstrated by the numerical simulation of
the time-dependent model equations (1). Figure 2 shows the
typical dynamical behavior and transition to the steady ground
state (m = 0) of the polariton component for intermediate
values of pumping power (P̄0 = 3) in the trap-free regime.
In addition, from the numerical simulations we can extract
and plot the following dynamical quantity:

μ(t) = −1

4

∫
S
[∇2|�|2 − 2|∇�|2 − 4V |�|2]d�r∫

S
|�|2d�r , (13)

where S is the numerical integration domain. In the steady-
state limit this quantity coincides with the chemical potential
of the condensate μ(t) → μ. As can be seen from the
dynamical simulations for P̄ > 1 (Fig. 2), the steady-state
regime is reached quickly, and the chemical potential is well
defined. Alternatively, the steady state is found by solving
the stationary equation (5) by the standard one-dimensional
relaxation method. The condensate wave function displays
characteristic inhomogeneous amplitude and phase profile
φ(r) (seen in Fig. 3) with the limiting behavior well described
by Eqs. (7) and (8).
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FIG. 2. Typical time evolution of (a) the condensate peak density
and (b) the chemical potential for P̄0 = 3, without a trapping potential.
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FIG. 3. (Color online) Radial profiles of the condensate ground
state in (a) trap-free and (b) harmonically trapped case. Both
amplitude, �(r), and phase, φ(r), are shown in comparison to the
Gaussian pump profile P (r)/Pth with the amplitude P̄0 = P (0)/Pth =
6. Profiles of the radial flux J and its divergence D (scaled up by the
factor of 10) for the ground state are shown for the (c) trap-free and
(d) trapped cases, respectively. The harmonic potential of the depth
U 2

0 = 0.1 is shown in (b) by the gray curve.

From Fig. 3(c) it is seen that the inhomogeneous phase of
the condensate wave function results in the nonzero flux of the
polariton superfluid. Due to the spatially localized pump, the
polariton superfluid is continuously generated in the core area
of the steady state D > 0 and dissipated on its wings D < 0.
Thus the ground state of the strongly repulsive polariton
BEC is a spatially localized dissipative soliton. Its spatial
localization is owed to the balance of the superfluid currents,
and the internal structure of the currents is similar to that of
a continuously “self-defocusing” dissipative “antisoliton” of
the generalized complex Ginzburg-Landau equation described
in [19].

The presence of a harmonic trap modifies the asymptotic
behavior of the condensate and phase according to Eq. (9),
as shown in Fig. 3(b). Nevertheless, the structure of the
internal flow within the ground state of the condensate remains
qualitatively the same, as seen in Fig. 3(d). In the trapped
regime the internal flow of the polariton superfluid currents
lead to significant distortions in the condensate density profile,
nc(r). In particular, a wide pump with P̄0 � 1 leads to a
well-pronounced central peak [shown in Fig. 1(b) for σ 2 = 40
and P̄0 = 10] noted in numerical simulations of a similar
model of polariton BEC [20] and also hinted at in experi-
mental observations of a trapped exciton-polariton condensate
[11].

IV. TRAPPED VS TRAP-FREE REGIME

The ground m = 0 state of the polariton condensate can
be characterized by the dependence of chemical potential
μ on the parameters of the pump. In the absence of the
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FIG. 4. (Color online) Dependence μ(P̄0) for the ground state
m = 0 without the harmonic potential (dashed line) and in the
presence of a harmonic trapping potential U (r) = U 2

0 r2 with U 2
0 =

0.1 (solid line). Vertical dashed and solid lines indicate the cut-off
values of P̄0 for the ground state given by the linear limit (14). Marked
points (a) and (b) correspond to the condensate profiles shown in
Fig. 3. The width of the pump spot is σ 2 = 30 in both cases.

trapping potential, this dependence is determined by the
flux balance condition, and in the limit of low condensate
densities the dependence of μ on the pump intensity is
linear μ ∼ P̄0 = P0/Pth. In the presence of the harmonic
potential, this condition is modified by the trap, as seen
in Fig. 4.

For a fixed width of the pump, the cut-off value of
P̄0 corresponds to the linear limit |ψ | → 0, and deviates
quite significantly from the value P̄0 = 1 determined by the
threshold behavior (3) in the homogeneous excitation case.
The linear limit is determined by the cutoff for the ground
state in the effective two-dimensional (2D) potential formed by
the combination of the external harmonic trap U (r), repulsive
potential due to the spatially localized pump VR(r) = gRn0

R ,
and the internal inhomogeneous flux VJ (r) given by Eq. (12).
This cutoff can be estimated from the condition that the
effective potential in the linear limit is trapping (attractive)
rather than antitrapping (repulsive). Thus, the bound state
appears in the effective potential at the value of P̄0 given by
the positive root of the equation:

P̄ 2
0 − 2

(
1 + 4gR

γcR

1

σ 2

)
P̄0 +

(
1 + 4U0

γ 2
c

)
= 0. (14)

According to this formula, for the parameters in Fig. 4, the
ground state appears in the trap-free system at P̄0 ≈ 1.97.
The presence of the harmonic trap with U 2

0 = 0.1 lowers
the threshold to P̄0 ≈ 1.61. The predicted tendency of the
harmonic confinement to lower the threshold of the steady-
state formation compared to the trap-free case, agrees with
the numerically calculated cut-off values in Fig. 4. Above the
threshold, the harmonic trap leads, for the same parameters
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Fig. 6.

of the pump, to the formation of the steady-state BEC with
stronger spatial localization and higher peak density, as can be
seen from comparison of Figs. 3(a) and 3(b).

For a fixed strength of the harmonic confinement, the
width of the pump spot determines different trapping regimes.
Intuitively, for an excitation spot much wider than the trap, the
limiting behavior should be described by a homogeneous pump
approximation P (r) ≈ P0 [15,20]. In the opposite regime of a
narrow excitation spot, the limiting behavior should be close
to that of a free condensate. Contrary to this intuitive picture,
the dependence of the chemical potential μ on the width of
the excitation spot σ 2 calculated numerically shows dramatic
differences for trapped and free condensates (Fig. 5). Most
notably, a trapped condensate displays well-pronounced bista-
bility, whereby both narrow and wide pumps can support two
different steady states with the same energy. In addition, the
condensate density profiles are strongly spatially modulated
(see Fig. 6). This is due to the presence of two competing
spatial scales. One of them, ∼σ , is defined by the pump, and
the other one, ∼rTF, is defined by the trapping potential and is
given by the characteristic radius of the wave function in the
Thomas-Fermi limit. The latter is obtained by neglecting both
phase and density gradients in Eqs. (10), as the solution to the
equation:

U 2
0 r2

TF + γcgR

R
P̄0 exp

(
− r2

TF

σ 2

)
= μ. (15)

In the regime of a wide pump, the condensate density can
be reasonably well approximated by the radially symmetric
Thomas-Fermi profile with the radius rTF given by Eq. (15),
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FIG. 6. (Color online) Radial shapes of the condensate ground
states in the harmonically trapped case for U 2

0 = 0.1, P̄0 = 5 and the
width of the pump spot σ 2 corresponding to the points marked in
Fig. 5. (a)–(c) Both amplitude, �(r), and phase, φ(r), are shown in
comparison to the condensate profile obtained in the Thomas-Fermi
approximation, �TF (gray). (d)–(f) Profiles of the radial flux J and
its divergence D (scaled up by the factor of 10) for the ground states
shown in the panels (a)–(c).

as can be seen in Fig. 6(a). In this regime, the ground state
in the form of a dissipative soliton becomes dynamically
unstable with respect to azimuthal perturbations for P̄0 � 1,
as established in [20]. There it was shown that this instability
can lead to rotational symmetry breaking whereby multiple
vortex states enter the condensate.

For a very narrow pump, σ 2 
 r2
TF, the Thomas-Fermi

radius exactly coincides with the well-known expression for a
conservative BEC with repulsive interparticle interactions in a
harmonic trapping potential: r0

TF =
√
μ/U 2

0 . In our numerical
simulations we find that rTF ≈ r0

TF for a wide range of values
σ < rTF. In this parameter regime the condensate density
profile strongly deviates from the Thomas-Fermi profile
[Figs. 6(b) and 6(c)], as neither phase nor density gradients can
be neglected. The condensate experiences strong modulations
of density with a notable density dip along the line D = 0
separating the regions of loss and gain. The condensate peak
density is also damped as the pump narrows down and the
dip at r = 0 appears for the values of σ corresponding to
the negative value of q− in (8). We note that the point (b)
in Fig. 5 corresponds to q− = 0 for U 2

0 = 0.1. Under the
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conditions of a strong (P̄0 � 1) narrow pump the steady
state is dynamically unstable and exhibits strong peak density
oscillations.

V. SINGLE VORTEX STATE

Spatially localized dissipative vortices are similarly found
as higher-order steady states of the system with m �= 0
[21], both in a trap-free and harmonically trapped polariton
BEC. Numerically, the system relaxes to a single steady-
state vortex when a phase factor exp(imθ ) is imprinted
onto a condensate “seed” at the initial stages of evolution.
The dependence of the chemical potential μ on the pump
amplitude P̄0 is plotted in Fig. 7 for a vortex with m = 1.
As expected, the chemical potential and the cutoff for this
excited state are higher than those of the ground state of
the trap-free condensate. In contrast, in a harmonic potential
the vortex and the ground state become nearly degenerate
(see Fig. 7).

The global phase of the vortex is imposed not only by the
vorticity but also by the nonzero flux, and therefore depends
on both azimuthal (θ ) and radial (r) coordinates. Using the
expression (8) for the radial dependence of the phase near the
vortex core, we find that the lines of the constant phase follow
a spiral trajectory described by the equations

xs(θ ) =
√

θ/q+ cos θ, ys(θ ) =
√

θ/q+ sin θ.
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FIG. 7. (Color online) Top: Dependence μ(P̄0) for the vortex
state m = 1 without and with the harmonic trapping potential
U (r) = U 2

0 r2 for σ 2 = 30. The semitransparent line indicates the
corresponding dependence for a trapped m = 0 state from Fig. 4.
Bottom: (a) Condensate density and (b) phase for a dynamically
unstable m = 1 stationary vortex state in a trap-free condensate at
P̄0 = 8. (c) Metastable rotating vortex state supported by a harmonic
trap (U 2

0 = 0.1) at P̄0 = 6.

This spiral phase structure is shown in Fig. 7(b) for the
numerically found localized vortex state in Fig. 7(a), without
the trapping potential. It is a signature of the polariton BEC
vortex observed in the experiments [2], and also appears as
a characteristic feature of vortex states in other dissipative
systems [17,22,23].

The ground state (m = 0) of the polariton condensate is
dynamically stable in the absence of a trap. In contrast, we
find that a single vortex created in a localized steady-state
BEC by phase imprinting is dynamically unstable and, in the
absence of potential, spirals out of the condensate, as predicted
for the case of trapped dissipative BEC of alkali atoms
[14,24]. As can be seen from comparison of Figs. 4 and 7, the
addition of a stationary (i.e., nonrotating) harmonic potential
dramatically modifies the threshold of the optical pumping
required to sustain a steady state of a polariton BEC with an
angular momentum and leads to the possibility of a long-term
survival of the vortex in the form of an eccentric rotating
state shown in Fig. 7(c). The detailed study of the stabilizing
effect of the trapping potential on the vortex dynamics and
the dynamics near the onset of rotational symmetry breaking
[20] is beyond the scope of this study. However, we have
confirmed that a wide pump (corresponding to small density
gradients in the harmonic trap) tends to stabilize the vortex
state.

VI. CONCLUSIONS

We have characterized the 2D stationary regime of the
polariton BEC in the framework of an open-dissipative Gross-
Pitaevskii model coupled to an exciton reservoir and described,
both analytically and numerically, properties of the ground and
excited states (vortices) depending on the pump and trapping
parameters. We have shown that the spatial localization of
the condensate, even in the absence of a trapping potential,
is supported by the balance of the internal superfluid flows
established by an inhomogeneous nonlinear gain due to optical
pump and linear loss due to the decay of the polaritons. The
ground state of the condensate can therefore be described as
a continuously self-defocusing dissipative soliton. We have
also investigated localized dissipative vortex states and have
shown that they can display metastable behavior in nonrotating
trapping potentials.

Finally, we note that the open-dissipative model with the
inhomogeneous pump used here and successfully employed
for theoretical description of experiments with microcavity
polaritons, has many similarities to optical systems with
localized gain landscapes [13,22]. These and similar studies
suggest that the 2D stationary regime of polariton BEC can po-
tentially display a rich variety of localized states which are not
exhausted by radially symmetric configurations. In particular,
the experiments with polariton BEC excited by the elliptical
optical pump have demonstrated pattern formation due to the
appearance of standing waves [25]. Furthermore, the recent
experiment with polariton BECs created by two pump spots
[26] demonstrates novel possibilities arising from interaction
of two dissipative solitons with variable separation. The clear
understanding of the structure of phase gradients underpinning
the existence of steady-state polariton condensates presented
in our work enables us to gain immediate insight into the
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properties and outcomes of such interactions. The possibility
to create a rich variety of localized states by varying the spatial
properties of the off-resonant optical pump are currently under
investigation and will be reported elsewhere.
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